Bombardment Simulations and Intercalation Studies of Carbon Materials
نویسندگان
چکیده
Molecular bombardment experiments have led to the possibility of altering materials with properties not normally associated with those materials. Molecular bombardment leads to defect formation in the material, potentially creating a pore, depending on the material and bombarding molecule. Carbon allotropes, specifically graphite and graphene, make excellent candidates for molecular bombardment experimentation. Depending on the bombarding molecule and the kinetic energy associated with that molecule, the defects induced will be sufficient to create a pore in the graphene. The AIREBO potential is used to simulate a graphene bilayer being bombarded with a single Ar atom, or a C60 molecule, to induce the formation of a pore. The system is then annealed to simulate bond restructuring. Analysis of the pore formation is performed using a model that incorporates ring formation in the graphene bilayer as an indicator of completeness, along with the area of the pore. Graphite has become a popular medium for intercalating lithium atoms, making it useful as an anode in Li-ion batteries. However, graphite has a relatively low specific capacity, compared to pure lithium. In search of a higher specific capacity, a novel carbon material, graphyne, which is a theoretically proposed material that consist of two-dimensional networks of carbon with both sp and sp hybridized bonds, has been proposed as a superior adsorbent. Previous theoretical studies have shown that graphyne has the ability to intercalate more lithium atoms per carbon atom than
منابع مشابه
Molecular dynamics studies of the chemical sputtering of carbon-based materials by hydrogen bombardment
A central issue in the performance of tokamak fusion devices is the choice of the plasma-facing materials. During the device operation the plasma-facing surfaces are subject to extreme heat and particle loads, as they are impinged on by escaped fusion plasma particles. Although carbon-based materials have excellent thermomechanical properties in view of the high heat flux, their use in the next...
متن کاملNumerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
Severe, particle-level strains induced during both production and cycling have been putatively linked to lifetime limiting damage in lithium-ion cells. Because of the presently unknown contributions of manufacturing and intercalation induced stresses in Li cells, this correlation is critical in determining optimal materials and manufacturing methods for these cells. Both global and localized lo...
متن کاملNeutron scattering studies of disordered carbon anode materials
Carbon-based anodes show many promising properties in lithium-ion rechargeable batteries. So-called ‘disordered carbons’ are characterized by a substantial amount of residual hydrogen, and exhibit large Li uptake capacities. We have employed a variety of neutron scattering techniques, coupled with computer simulations, to study the composition, local atomic structure, and vibrational dynamics o...
متن کاملNanoporous Ag-CNTs foamed electrode for lithium intercalation
Intercalation of lithium into Ag-CNTs sample is reported here. We have used a nano-porous silver foam as a frame for deposition of the CNTs inside the pores by electrophoresis deposition (EPD) technique. By using chronopotentiometry method, we have noticed that the Li storage capacity of the prepared Ag-CNTs electrode was improved noticeably in comparison with literature. ...
متن کاملIon Bombardment of Interplanetary Dust
The recent discovery of ion tracks in interplanetary dust and the increasing evidence for carbon and carburized materials in these objects are strongly suggestive that chemical processing by energetic charged-particle bombardment has occurred during the dust lifetimes. The track density gives a measure of the total ion fluence experienced by the grains. We use this information and laboratory da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016